






were aligned to the mm10 genome using Tophat v2.0.10. Reads were pro-
cessed with Samtools and then mapped to Ensembl transcripts using HTSeq.
Differential expression was tested using the DESeq R package (R Coding
Team) (48). A genome coverage file was generated and scaled to RPM using
Bedtools (46, 47) (GEO accession no. GSE57694).

Actinomycin D Treatment. DN3 cells were FACS-sorted into serum-free Opti-
MEM medium (Gibco) and rested at 37 °C for 30 min. Cells were then treated
with 5 μg/mL actinomycin D at 37 °C and lysed in RLT buffer with β-mer-
captoethanol. RNA was extracted using the Qiagen RNEasy Mini Kit, fol-
lowed by RT-PCR and qPCR.

Rpl22 Reporter Assay. 293T cells were transfected with 250 ng of human Rpl22
promoter fused to luciferase (Switchgear Genomics), β-galactosidase, and
either pcDNA3.1 alone or with 0.5 or 1 μg of human Miz-1 in pcDNA3.1. Cells
were lysed after 48 h and analyzed for Renilla luciferase expression and
β-galactosidase expression for normalization, using LightSwitch Luciferase
Assay Reagent (Switchgear Genomics) and ONPG, respectively.

Anti-CD3 Injections. Four- to 6-wk-old Miz-1ΔPOZ × Rag1−/−, MycV394D ×
Rag1−/−, and Rag1−/− mice were injected i.p. with 50 μg of anti-CD3 (145-
2C11) per mouse or with PBS alone (32). Mice were killed at the indicated
times and analyzed by flow cytometry.

Retroviral Transfection. Rpl22 was cloned into the MigR1 vector using the
following primers: 5′-CGACTCGAGATGGCGCCTGTGAAAAAGCTTG-3′ and 5′-
CGAGAATTCTTAATCCTCGTCTTCCTCCTCCTC-3′. MigR1 and MigR1-Rpl22 were
generated using Phoenix Eco cells. DN3a cells were sorted and resuspended in
viral supernatant in the presence of 8 μg/mL polybrene. Cells were centrifuged
at 515 × g for 90 min. Media was changed at 4 h after infection, and cells were
plated onto OP9-DL4 stromal cells with 5 ng/mL Flt3L and 1 ng/mL IL-7 for 4 d.

Statistical Analysis. Quantitative data are presented as mean ± SD and
were analyzed using one-way ANOVA or the two-tailed Student t test.
A P value ≤0.05 was considered to indicate statistical significance (*P ≤ 0.05;
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001).
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Fig. S1. Deletion of p53 restores the ability of Miz-1ΔPOZ pre-T cells to differentiate in vitro. (A) DN3 pre-T cells from WT, Miz-1ΔPOZ, Trp53−/−, and Miz-1ΔPOZ ×
Trp53−/− mice were sorted onto OP9-DL4 and analyzed for CD25, CD44, CD4, and CD8 surface expression after 4 d in culture. Data are representative of three
independent experiments. (B) Cell cycle analysis using PI staining performed on sorted, permeabilized DN3 and DN4 cells. Graph shows percentages of cells
in S/G2/M phases of the cell cycle. Data are averaged from three independent experiments and are presented as mean ± SD. (C) Cell cycle analysis after in vivo
BrdU labeling. Graph shows percentages of BrdU+ DN3 and DN4 cells. Data are averaged from three independent experiments and are presented as mean ± SD.
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Fig. S2. Mitogenic stimulation of WT and Miz-1ΔPOZ pre-T cells. FACS analysis of WT and Miz-1ΔPOZ pre-T cells at 72 h after injection with αCD3.
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Fig. S3. Miz-1 does not directly regulate the expression of p53 target genes in DN3 pre-T cells. (A) ChIP-seq experiments for Miz-1 and histone activation
marks (H3K4Me3, H3K27Ac, and H3K9Ac) in P6D4 murine pre-T cells. Shown are p53 target genes (p21, Bax, and Puma) and a positive control for Miz-1 binding
and activation (Vamp4). Scale is in number of reads per million reads. (B) ChIP-qPCR experiments to determine possible binding of Miz-1 to the promoters of
p53 target genes in murine P6D4 pre-T cells. Graph shows fold enrichment of anti-Miz-1 ChIP over rabbit IgG control ChIP. The Vamp4 promoter contains
a Miz-1–binding site and is used as a positive control for the Miz-1 ChIP. Data are represented as average fold change ± SD from at least three independent
experiments. (C) ChIP-qPCR experiments to determine possible binding of Miz-1 to the promoters of p53 target genes in sorted primary DN3 cells. Graph shows
fold enrichment of anti–Miz-1 ChIP over rabbit IgG control ChIP. Data represent as average fold change ± SD from at least three independent experiments.
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Fig. S4. Miz-1 does not directly regulate the expression of p53 target genes in pre-B cells. (A) ChIP-seq experiments for Miz-1 and histone activation marks
(H3K4Me3, H3K27Ac, and H3K9Ac) in a 70Z/3 pre-B cell line. Shown are p53 target genes (p21, Bax, and Puma) and a positive control for Miz-1 binding and
activation (Vamp4). Scale is in number of RPM. (B) ChIP-qPCR experiments to determine possible binding of Miz-1 to the promoters of p53 target genes in 70Z/3
pre-B cells. Graph shows fold enrichment of anti–Miz-1 ChIP over rabbit IgG control ChIP. The Vamp4 promoter contains a Miz-1–binding site and serves as
a positive control for the Miz-1 ChIP. Data represent average fold change ± SD from at least three independent experiments.

Table S1. qPCR primer sequences

Primer Sequence Reference

Cdkn1a (p21) forward AGATCCACAGCGATATCCAGAC (1)
Cdkn1a (p21) reverse ACCGAAGAGACAACGGCACACT
Puma (Bbc3) forward ACGACCTCAACGCGCAGTACG (1)
Puma (Bbc3) reverse GAGGAGTCCCATGAAGAGATTG
Bax forward CAGGATGCGTCCACCAAGAA (1)
Bax reverse AGTCCGTGTCCACGTCAGCA
Gapdh forward TTCCGTGTTCCTACCCCCAATG (2)
Gapdh reverse GGAGTTGCTGTTGAAGTCGCAG
P53 forward AAGACAGGCAGACTTTTCGCC (3)
P53 reverse CGGGTGGCTCATAAGGTACC
Actin forward CTCTGGCTCCTAGCACCATGAAGA (4)
Actin reverse GTAAAACGCAGCTCAGTAACAGTCCG
Rpl22 forward AGGTGCCTTTCTCCAAAAGGTATT This study
Rpl22 reverse AAACCACCGGTTTTGTTCCT
Rpl22l1 forward TGGAGGTTTCATTTGGACCTTAC (5)
Rpl22l1 reverse TTTCCAGTTTTTCCATTGACTTTAAC

1. Li T, et al. (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149(6):1269–1283.
2. Kosan C, et al. (2010) Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity 33(6):917–928.
3. Hattangadi SM, Burke KA, Lodish HF (2010) Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation. Blood 115(23):4853–4861.
4. Stephens AS, Stephens SR, Morrison NA (2011) Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes 4:410.
5. O’Leary MN, et al. (2013) The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet 9(8):e1003708.
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Table S2. ChIP-qPCR primer sequences

Primer Sequence Reference

Cdkn1a (p21) forward CGCTGCGTGACAAGAGAATA (1)
Cdkn1a (p21) reverse CCTCCCCTCTGGGAATCTAA
Puma (Bbc3) forward CTTGTGCCCCAGCTTTCAT (1)
Puma (Bbc3) reverse GAGTCCCAGGTGCTTCCTTC
Bax forward CGGCAATTCTGCTTTAACCT (1)
Bax reverse CGCCCCCATTATTTCTTCTT
Gapdh forward Gtgttcctacccccaatgtg This study
Gapdh reverse ggagacaacctggtcctcag
Vamp4 forward AGTCACCCTTTCAGCTCCAG This study
Vamp4 reverse TCAGATCCGATGGAGGAGCA
Rpl22_2 forward Tccctgagtcattcgcagt This study
Rpl22_2 reverse cttttcccagggcgaagt
Rpl22_3 forward Cagttcctaactggcgttgg This study
Rpl22_3 reverse agcctcagcccagagaatg

1. Khandanpour C, et al. (2013) Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23(2):200–214.
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